August 22, 2006
Если кратко: Безработный профессор, которому всего 40 лет, решил одну из 7 самых сложных задач человечества, живёт в панельке на окраине города с мамой и вместо того чтоб получить премию о которой мечтают все математики мира, ну и в придачу миллион долларов, он ушёл собирать грибы и просил его не беспокоить. Видимо под Питером растут особенно злые (своими галюциногенными свойствами) грибы.
А теперь более подробно:
http://lenta.ru/news/2006/08/16/perelman/
Григорий Перельман, доказавший гипотезу Пуанкаре, отказывается от многочисленных наград, и денежных премий, которые присуждают ему за это достижение, сообщает газета Guardian. После широкомасштабной проверки доказательства, которая продолжалась почти четыре года, научное сообщество пришло к выводу, что решение Перельмана верно.
Гипотеза Пуанкаре относится к числу семи важнейших математических “задач тысячелетия”, за решение каждой из которых Математический институт Клэя (Clay Mathematics Institute) назначил премию в один миллион долларов. Таким образом, Перельман должен получить вознаграждение. Ученый не общается с прессой, но газете стало известно, что Перельман не хочет брать эти деньги. По словам математика, комитет, присуждавший награду, недостаточно квалифицирован, чтобы оценить его работу.
Владеть миллионом долларов в Питере небезопасно, – в шутку предполагает другую причину необычного поведения Перельмана профессиональное сообщество. Об этом рассказал газете Найджел Хитчин (Nigel Hitchin), профессор математики Оксфордского университета.
На следующей неделе, по слухам, будет объявлено, что Перельману присуждена самая престижная в данной сфере международная Филдсовская премия, состоящая из драгоценой медали и и денежного вознаграждения. Филдсовская премия считается математическим аналогом Нобелевской. Ее вручают раз в четыре года на международном математическом конгрессе, причем лауреаты премии не должны быть старше 40 лет. Перельман, который в 2006 году перешагнет сорокалетний рубеж и лишится шанса когда-либо получить этот приз, не хочет принимать и эту награду.
О Перельмане давно известно, что он избегает торжественных мероприятий и не любит, когда им восхищаются. Но в сложившейся ситуации поведение ученого выходит за рамки эксцентричности кабинетного теоретика. Перельман уже оставил учебную работу и отказывается от выполнения профессорских функций. Теперь он хочет спрятаться и от признания его заслуг перед математикой – делом всей его жизни.
Григорий Перельман работал над доказательством теоремы Пуанкаре восемь лет. В 2002 году он разместил решение задачи на сайте препринтов Лос-Аламосской научной лаборатории. До сих пор он так и не опубликовал своего труда в рецензируемом журнале, что является обязательным условием присуждения большинства премий.
Перельмана можно считать эталонным образцом продукции советского образования. Он родился в 1966 году в Ленинграде. В этом городе живет и сейчас. Перельман учился в специализированной школе № 239 с углубленным изучением математики. Побеждал на бессчетных олимпиадах. Был без экзаменов зачислен на матмех ЛГУ. Получал Ленинскую стипендию. После университета поступил в аспирантуру при Ленинградском отделении Математического института им.В.А.Стеклова, где и остался работать. В конце восьмидесятых Перельман переехал в США, профессорствовал в нескольких университетах, а затем вернулся на старое место.
Состояние питерского особняка графа Муравьева на Фонтанке, в котором располагается Математический институт, делает бессеребреничество Перельмана особенно неадекватным. Здание, как сообщает газета “Известия” может в любой момент разрушиться и упасть в реку. Закупки компьютерной техники (единственного оборудования, необходимого математикам) еще удается финансировать при помощи различных грантов, но реставрацию исторического сооружения благотворительные организации оплачивать не готовы.
==========================
http://www.newsinfo.ru/news/2006/08/news1325575.php
Математик-отшельник, доказавший одну из самых сложных научных гипотез – теорему Пуанкаре, не менее загадочный, чем сама проблема.
О нем известно немного. Поступил в институт по результатам школьных олимпиад, получал ленинскую стипендию. В питерской 239-й спецшколе его помнят - сын Якова Перельмана, автора знаменитого учебника "Занимательная физика". Фото Гриши Перельмана - на доске великих вместе с Лобаческим и Лейбницем.
"Он был такой отличник, только по физкультуре... А так была бы медаль", - вспоминает его преподаватель Тамара Ефимова, директор физмат-лицея 239 в интервью Первому каналу.
Он всегда был за чистую науку, против формальностей - это слова его бывшего школьного учителя, одного из немногих, с кем Перельман поддерживал связь все восемь лет поиска. Как он говорит, математику с работы пришлось уйти, потому что там надо было писать статьи-отчеты, а Пуанкаре поглощал все его время. Математика превыше всего.
Решению одной из семи нерешаемых математических задач Перельман положил восемь лет жизни. Он работал в одиночку, где-то на чердаке, тайком. Читал лекции в Америке, чтобы прокормиться дома. Ушел с работ, которая отвлекала от главной цели, не отвечает на звонки и не общается с прессой.
За решение одной из семи нерешаемых математических задач положен миллион долларов, это премия Филдса, нобелевка для математиков. Григорий Перельман стал основным кандидатом на ее получение.
Ученый это знает, но, судя по всему, в денежном признании явно не заинтересован. Как уверяют коллеги, даже документы на премию не представил.
"Как я понимаю, самого Григория Яковлевича миллион совершенно не волнует. – говорит Ильдар Ибрагимов, академик РАН. - На самом деле люди, которые в состоянии решить эти задачи, это в основном люди, которые будут работать не из-за этих денег. Их будет волновать нечто совсем другое".
Перельман опубликовал работу по гипотезе Пуанкаре единственный раз три года назад в Интернете. Скорее даже не работу, а набросок в 39 страниц. Написать более подробный отчет- с развернутыми доказательствами он не соглашается. Даже вице-президент Всемирного математического общества, который специально приехал в Петербург, чтобы найти Перельмана, не удалось этого сделать.
За прошедшие три года никому не удалось найти ошибку в расчетах Перельмана, как того требует регламент премии Филдса. Что и требовалось доказать.
==============================
http://elementy.ru/news/430288
Процесс доказательства гипотезы Пуанкаре сейчас, по-видимому, вступает в заключительную стадию. Три группы математиков окончательно разобрались в идеях Григория Перельмана и за последние пару месяцев представили свои версии полного доказательства этой гипотезы.
Гипотеза, сформулированная Пуанкаре в 1904 году, утверждает, что все трехмерные поверхности в четырехмерном пространстве, гомотопически эквивалентные сфере, гомеоморфны ей. Говоря простыми словами, если трехмерная поверхность кое в чем похожа на сферу, то, если ее расправить, она может стать только сферой и ничем иным. Подробности об этой гипотезе и об истории ее доказательства читайте в популярной заметке Проблемы 2000 года: гипотеза Пуанкаре в журнале «Компьютерра».
За доказательство гипотезы Пуанкаре Математический институт им. Клэя присудил премию в миллион долларов, что может показаться удивительным: ведь речь идет об очень частном, малоинтересном факте. На самом деле, для математиков важны не столько свойства трехмерной поверхности, сколько факт трудности самого доказательства. В этой задаче в концентрированном виде сформулировано то, что не удавалось доказать с помощью имевшихся ранее идей и методов геометрии и топологии. Она позволяет как бы заглянуть на уровень глубже, в тот пласт задач, который можно будет решить только с помощью идей «нового поколения».
Как и в ситуации с теоремой Ферма, выяснилось, что гипотеза Пуанкаре есть частный случай гораздо более общего утверждения о геометрических свойствах произвольных трехмерных поверхностей — гипотезы геометризации Тёрстона (Thurston's Geometrization Conjecture). Поэтому усилия математиков были направлены не на решение этого частного случая, а на построение нового математического подхода, который способен справляться с такими задачами.
Прорыв в 2002-2003 годах совершил российский математик Григорий Перельман. В своих трех статьях math.DG/0211159, math.DG/0303109, math.DG/0307245, предложив ряд новых идей, он развил и довел до конца метод, предложенный в 1980-е годы Ричардом Гамильтоном. В своих работах Перельман утверждает, что построенная им теория позволяет доказать не только гипотезу Пуанкаре, но и гипотезу геометризации.
Суть метода состоит в том, что для геометрических объектов можно определить некоторое уравнение «плавной эволюции», похожее на уравнение ренормализационной группы в теорфизике. Исходная поверхность в ходе этой эволюции будет деформироваться и, как показал Перельман, в конце концов плавно перейдет именно в сферу. Сила этого подхода состоит в том, что, минуя все промежуточные моменты, можно сразу заглянуть «в бесконечность», в самый конец эволюции, и обнаружить там сферу.
Работы Перельмана положили начало интриге. В своих статьях он развил общую теорию и набросал ключевые моменты доказательства не только гипотезы Пуанкаре, но и гипотезы геометризации. Полного доказательства во всех деталях Перельман не представил, хотя утверждал, что обе гипотезы он доказал. В том же 2003 году Перельман совершил турне по США с серией лекций, на которых четко и подробно отвечал на любые технические вопросы слушателей.
Сразу же после опубликования препринтов Перельмана специалисты приступили к проверке ключевых моментов его теории, и ни одной ошибки до сих пор не найдено. Более того, за прошедшие годы несколько коллективов математиков смогли впитать предложенные Перельманом идеи до такой степени, чтобы приступить к записыванию полного доказательства «набело».
В мае 2006 года появилась работа B. Kleiner, J. Lott, math.DG/0605667, в которой был дан подробный вывод опущенных моментов в доказательстве Перельмана. (Кстати, эти авторы поддерживают веб-страничку, посвященную статьям Перельмана и связанным с ними работам.)
Затем в июне 2006 года в журнале Asian Journal of Mathematics была опубликована 327-страничная статья китайских математиков Huai-Dong Cao и Xi-Ping Zhu, озаглавленная «Полное доказательство гипотез Пуанкаре и геометризации — приложение теории Гамильтона—Перельмана о потоках Риччи». Сами авторы не претендуют на абсолютно новое доказательство, а лишь утверждают, что подход Перельмана действительно работает.
Наконец, на днях появился 473-страничная статья (или уже книга?) J. W. Morgan, G. Tian, math.DG/0607607, в которой авторы, по следам Перельмана, приводят свое доказательство гипотезы Пуанкаре (а не более общей гипотезы геометризации). Джон Морган (John Morgan) считается одним из главных специалистов по этой проблеме, и после выхода его работы можно, по-видимому считать, что гипотеза Пуанкаре окончательно доказана.
Интересно, кстати, что вначале статья китайских математиков распространялась только в бумажной версии по цене 69 долларов, так что далеко не все желающие имели возможность взглянуть на нее. Но уже на следующий день после появления в архиве препринтов статьи Моргана—Тяна на сайте Asian Journal of Mathematics появилась и электронная версия статьи.
Чья доводка доказательства Перельмана точнее и прозрачнее — покажет время. Не исключено, что в ближайшие годы оно упростится, как это случилось с теоремой Ферма. Пока что видно лишь увеличение объема публикаций: от 30-страничных статей Перельмана до толстой книжицы у Моргана и Тяна, но связано это не с усложнением доказательства, а с более подробным выводом всех промежуточных шагов.
А тем временем ожидается, что на Международном конгрессе математиков, который пройдет в августе этого года в Мадриде, будет «официально» объявлено об окончательном доказательстве гипотезы и, возможно, о том, кому будет присуждена премия Института Клэя. Кроме этого, ходят слухи, что Григорий Перельман станет одним из четырех филдсовских медалистов, что является высшим знаком отличия для молодых математиков.
Тэги: Aug2006 Разное Новости Кухонная философия Общество
Комментировать:
Архив:
Jul2024 Jun2024 May2024 Apr2024 Mar2024 Feb2024 Jan2024 Dec2023 Nov2023 Oct2023 Sep2023 Aug2023 Jul2023 Jun2023 May2023 Apr2023 Mar2023 Feb2023 Jan2023 Dec2022 Nov2022 Oct2022 Sep2022 Aug2022 Jul2022 Jun2022 May2022 Apr2022 Mar2022 Feb2022 Jan2022 Dec2021 Nov2021 Oct2021 Sep2021 Aug2021 Jul2021 Jun2021 May2021 Apr2021 Mar2021 Feb2021 Jan2021 Dec2020 Nov2020 Oct2020 Sep2020 Aug2020 Jul2020 Jun2020 May2020 Apr2020 Mar2020 Feb2020 Jan2020 Dec2019 Nov2019 Oct2019 Sep2019 Aug2019 Jul2019 Jun2019 May2019 Apr2019 Mar2019 Feb2019 Jan2019 Dec2018 Nov2018 Oct2018 Sep2018 Aug2018 Jul2018 Jun2018 May2018 Apr2018 Mar2018 Feb2018 Jan2018 Dec2017 Nov2017 Oct2017 Sep2017 Aug2017 Jul2017 Jun2017 May2017 Apr2017 Mar2017 Feb2017 Jan2017 Dec2016 Nov2016 Oct2016 Sep2016 Aug2016 Jul2016 Jun2016 May2016 Apr2016 Mar2016 Feb2016 Jan2016 Dec2015 Nov2015 Oct2015 Sep2015 Aug2015 Jul2015 Jun2015 May2015 Apr2015 Mar2015 Feb2015 Jan2015 Dec2014 Nov2014 Oct2014 Sep2014 Aug2014 Jul2014 Jun2014 May2014 Apr2014 Mar2014 Feb2014 Jan2014 Dec2013 Nov2013 Oct2013 Sep2013 Aug2013 Jul2013 Jun2013 May2013 Apr2013 Mar2013 Feb2013 Jan2013 Dec2012 Nov2012 Oct2012 Sep2012 Aug2012 Jul2012 Jun2012 May2012 Apr2012 Mar2012 Feb2012 Jan2012 Dec2011 Nov2011 Oct2011 Sep2011 Aug2011 Jul2011 Jun2011 May2011 Apr2011 Mar2011 Feb2011 Jan2011 Dec2010 Nov2010 Oct2010 Sep2010 Aug2010 Jul2010 Jun2010 May2010 Apr2010 Mar2010 Feb2010 Jan2010 Dec2009 Nov2009 Oct2009 Sep2009 Aug2009 Jul2009 Jun2009 May2009 Apr2009 Mar2009 Feb2009 Jan2009 Dec2008 Nov2008 Oct2008 Sep2008 Aug2008 Jul2008 Jun2008 May2008 Apr2008 Mar2008 Feb2008 Jan2008 Dec2007 Nov2007 Oct2007 Sep2007 Aug2007 Jul2007 Jun2007 May2007 Apr2007 Mar2007 Feb2007 Jan2007 Dec2006 Nov2006 Oct2006 Sep2006 Aug2006 Jul2006 Jun2006 May2006 |
|
| |