Гипотеза Пуанкаре и особенности русского менталитета.

Всяческий Бред - Идти на Главную Страницу >>>

Категории:

Полезные Сведенья
Кухонная Философия
Общество и его пороки
Новости
Еда и Питье
Техника
Разное
Личное
Природа
Фото/Видео
"Веселые" Картинки
Юмор


Пишите Письма



Реклама:

Реклама

August 22, 2006

Если кратко: Безработный профессор, которому всего 40 лет, решил одну из 7 самых сложных задач человечества, живёт в панельке на окраине города с мамой и вместо того чтоб получить премию о которой мечтают все математики мира, ну и в придачу миллион долларов, он ушёл собирать грибы и просил его не беспокоить. Видимо под Питером растут особенно злые (своими галюциногенными свойствами) грибы.

А теперь более подробно:

http://lenta.ru/news/2006/08/16/perelman/

Григорий Перельман, доказавший гипотезу Пуанкаре, отказывается от многочисленных наград, и денежных премий, которые присуждают ему за это достижение, сообщает газета Guardian. После широкомасштабной проверки доказательства, которая продолжалась почти четыре года, научное сообщество пришло к выводу, что решение Перельмана верно.
Гипотеза Пуанкаре относится к числу семи важнейших математических “задач тысячелетия”, за решение каждой из которых Математический институт Клэя (Clay Mathematics Institute) назначил премию в один миллион долларов. Таким образом, Перельман должен получить вознаграждение. Ученый не общается с прессой, но газете стало известно, что Перельман не хочет брать эти деньги. По словам математика, комитет, присуждавший награду, недостаточно квалифицирован, чтобы оценить его работу.

Владеть миллионом долларов в Питере небезопасно, – в шутку предполагает другую причину необычного поведения Перельмана профессиональное сообщество. Об этом рассказал газете Найджел Хитчин (Nigel Hitchin), профессор математики Оксфордского университета.

На следующей неделе, по слухам, будет объявлено, что Перельману присуждена самая престижная в данной сфере международная Филдсовская премия, состоящая из драгоценой медали и и денежного вознаграждения. Филдсовская премия считается математическим аналогом Нобелевской. Ее вручают раз в четыре года на международном математическом конгрессе, причем лауреаты премии не должны быть старше 40 лет. Перельман, который в 2006 году перешагнет сорокалетний рубеж и лишится шанса когда-либо получить этот приз, не хочет принимать и эту награду.

О Перельмане давно известно, что он избегает торжественных мероприятий и не любит, когда им восхищаются. Но в сложившейся ситуации поведение ученого выходит за рамки эксцентричности кабинетного теоретика. Перельман уже оставил учебную работу и отказывается от выполнения профессорских функций. Теперь он хочет спрятаться и от признания его заслуг перед математикой – делом всей его жизни.

Григорий Перельман работал над доказательством теоремы Пуанкаре восемь лет. В 2002 году он разместил решение задачи на сайте препринтов Лос-Аламосской научной лаборатории. До сих пор он так и не опубликовал своего труда в рецензируемом журнале, что является обязательным условием присуждения большинства премий.

Перельмана можно считать эталонным образцом продукции советского образования. Он родился в 1966 году в Ленинграде. В этом городе живет и сейчас. Перельман учился в специализированной школе № 239 с углубленным изучением математики. Побеждал на бессчетных олимпиадах. Был без экзаменов зачислен на матмех ЛГУ. Получал Ленинскую стипендию. После университета поступил в аспирантуру при Ленинградском отделении Математического института им.В.А.Стеклова, где и остался работать. В конце восьмидесятых Перельман переехал в США, профессорствовал в нескольких университетах, а затем вернулся на старое место.

Состояние питерского особняка графа Муравьева на Фонтанке, в котором располагается Математический институт, делает бессеребреничество Перельмана особенно неадекватным. Здание, как сообщает газета “Известия” может в любой момент разрушиться и упасть в реку. Закупки компьютерной техники (единственного оборудования, необходимого математикам) еще удается финансировать при помощи различных грантов, но реставрацию исторического сооружения благотворительные организации оплачивать не готовы.

==========================

http://www.newsinfo.ru/news/2006/08/news1325575.php

Математик-отшельник, доказавший одну из самых сложных научных гипотез – теорему Пуанкаре, не менее загадочный, чем сама проблема.

О нем известно немного. Поступил в институт по результатам школьных олимпиад, получал ленинскую стипендию. В питерской 239-й спецшколе его помнят - сын Якова Перельмана, автора знаменитого учебника "Занимательная физика". Фото Гриши Перельмана - на доске великих вместе с Лобаческим и Лейбницем.

"Он был такой отличник, только по физкультуре... А так была бы медаль", - вспоминает его преподаватель Тамара Ефимова, директор физмат-лицея 239 в интервью Первому каналу.

Он всегда был за чистую науку, против формальностей - это слова его бывшего школьного учителя, одного из немногих, с кем Перельман поддерживал связь все восемь лет поиска. Как он говорит, математику с работы пришлось уйти, потому что там надо было писать статьи-отчеты, а Пуанкаре поглощал все его время. Математика превыше всего.

Решению одной из семи нерешаемых математических задач Перельман положил восемь лет жизни. Он работал в одиночку, где-то на чердаке, тайком. Читал лекции в Америке, чтобы прокормиться дома. Ушел с работ, которая отвлекала от главной цели, не отвечает на звонки и не общается с прессой.

За решение одной из семи нерешаемых математических задач положен миллион долларов, это премия Филдса, нобелевка для математиков. Григорий Перельман стал основным кандидатом на ее получение.

Ученый это знает, но, судя по всему, в денежном признании явно не заинтересован. Как уверяют коллеги, даже документы на премию не представил.

"Как я понимаю, самого Григория Яковлевича миллион совершенно не волнует. – говорит Ильдар Ибрагимов, академик РАН. - На самом деле люди, которые в состоянии решить эти задачи, это в основном люди, которые будут работать не из-за этих денег. Их будет волновать нечто совсем другое".

Перельман опубликовал работу по гипотезе Пуанкаре единственный раз три года назад в Интернете. Скорее даже не работу, а набросок в 39 страниц. Написать более подробный отчет- с развернутыми доказательствами он не соглашается. Даже вице-президент Всемирного математического общества, который специально приехал в Петербург, чтобы найти Перельмана, не удалось этого сделать.

За прошедшие три года никому не удалось найти ошибку в расчетах Перельмана, как того требует регламент премии Филдса. Что и требовалось доказать.

==============================

http://elementy.ru/news/430288

Процесс доказательства гипотезы Пуанкаре сейчас, по-видимому, вступает в заключительную стадию. Три группы математиков окончательно разобрались в идеях Григория Перельмана и за последние пару месяцев представили свои версии полного доказательства этой гипотезы.

Гипотеза, сформулированная Пуанкаре в 1904 году, утверждает, что все трехмерные поверхности в четырехмерном пространстве, гомотопически эквивалентные сфере, гомеоморфны ей. Говоря простыми словами, если трехмерная поверхность кое в чем похожа на сферу, то, если ее расправить, она может стать только сферой и ничем иным. Подробности об этой гипотезе и об истории ее доказательства читайте в популярной заметке Проблемы 2000 года: гипотеза Пуанкаре в журнале «Компьютерра».

За доказательство гипотезы Пуанкаре Математический институт им. Клэя присудил премию в миллион долларов, что может показаться удивительным: ведь речь идет об очень частном, малоинтересном факте. На самом деле, для математиков важны не столько свойства трехмерной поверхности, сколько факт трудности самого доказательства. В этой задаче в концентрированном виде сформулировано то, что не удавалось доказать с помощью имевшихся ранее идей и методов геометрии и топологии. Она позволяет как бы заглянуть на уровень глубже, в тот пласт задач, который можно будет решить только с помощью идей «нового поколения».

Как и в ситуации с теоремой Ферма, выяснилось, что гипотеза Пуанкаре есть частный случай гораздо более общего утверждения о геометрических свойствах произвольных трехмерных поверхностей — гипотезы геометризации Тёрстона (Thurston's Geometrization Conjecture). Поэтому усилия математиков были направлены не на решение этого частного случая, а на построение нового математического подхода, который способен справляться с такими задачами.

Прорыв в 2002-2003 годах совершил российский математик Григорий Перельман. В своих трех статьях math.DG/0211159, math.DG/0303109, math.DG/0307245, предложив ряд новых идей, он развил и довел до конца метод, предложенный в 1980-е годы Ричардом Гамильтоном. В своих работах Перельман утверждает, что построенная им теория позволяет доказать не только гипотезу Пуанкаре, но и гипотезу геометризации.

Суть метода состоит в том, что для геометрических объектов можно определить некоторое уравнение «плавной эволюции», похожее на уравнение ренормализационной группы в теорфизике. Исходная поверхность в ходе этой эволюции будет деформироваться и, как показал Перельман, в конце концов плавно перейдет именно в сферу. Сила этого подхода состоит в том, что, минуя все промежуточные моменты, можно сразу заглянуть «в бесконечность», в самый конец эволюции, и обнаружить там сферу.

Работы Перельмана положили начало интриге. В своих статьях он развил общую теорию и набросал ключевые моменты доказательства не только гипотезы Пуанкаре, но и гипотезы геометризации. Полного доказательства во всех деталях Перельман не представил, хотя утверждал, что обе гипотезы он доказал. В том же 2003 году Перельман совершил турне по США с серией лекций, на которых четко и подробно отвечал на любые технические вопросы слушателей.

Сразу же после опубликования препринтов Перельмана специалисты приступили к проверке ключевых моментов его теории, и ни одной ошибки до сих пор не найдено. Более того, за прошедшие годы несколько коллективов математиков смогли впитать предложенные Перельманом идеи до такой степени, чтобы приступить к записыванию полного доказательства «набело».

В мае 2006 года появилась работа B. Kleiner, J. Lott, math.DG/0605667, в которой был дан подробный вывод опущенных моментов в доказательстве Перельмана. (Кстати, эти авторы поддерживают веб-страничку, посвященную статьям Перельмана и связанным с ними работам.)

Затем в июне 2006 года в журнале Asian Journal of Mathematics была опубликована 327-страничная статья китайских математиков Huai-Dong Cao и Xi-Ping Zhu, озаглавленная «Полное доказательство гипотез Пуанкаре и геометризации — приложение теории Гамильтона—Перельмана о потоках Риччи». Сами авторы не претендуют на абсолютно новое доказательство, а лишь утверждают, что подход Перельмана действительно работает.

Наконец, на днях появился 473-страничная статья (или уже книга?) J. W. Morgan, G. Tian, math.DG/0607607, в которой авторы, по следам Перельмана, приводят свое доказательство гипотезы Пуанкаре (а не более общей гипотезы геометризации). Джон Морган (John Morgan) считается одним из главных специалистов по этой проблеме, и после выхода его работы можно, по-видимому считать, что гипотеза Пуанкаре окончательно доказана.

Интересно, кстати, что вначале статья китайских математиков распространялась только в бумажной версии по цене 69 долларов, так что далеко не все желающие имели возможность взглянуть на нее. Но уже на следующий день после появления в архиве препринтов статьи Моргана—Тяна на сайте Asian Journal of Mathematics появилась и электронная версия статьи.

Чья доводка доказательства Перельмана точнее и прозрачнее — покажет время. Не исключено, что в ближайшие годы оно упростится, как это случилось с теоремой Ферма. Пока что видно лишь увеличение объема публикаций: от 30-страничных статей Перельмана до толстой книжицы у Моргана и Тяна, но связано это не с усложнением доказательства, а с более подробным выводом всех промежуточных шагов.

А тем временем ожидается, что на Международном конгрессе математиков, который пройдет в августе этого года в Мадриде, будет «официально» объявлено об окончательном доказательстве гипотезы и, возможно, о том, кому будет присуждена премия Института Клэя. Кроме этого, ходят слухи, что Григорий Перельман станет одним из четырех филдсовских медалистов, что является высшим знаком отличия для молодых математиков.



Тэги: Aug2006 Разное Новости Кухонная философия Общество

Темы, имеющие некоторое отношение к этой (русскоязычный поиск в mysql все же очень не совершенен):
Особенности менталитета September 22, 2016
Культурные особенности March 29, 2010
Особенности терминологии в фотографии June 24, 2006
Особенности старения у азиатов October 6, 2014
Немного похабного языкознания October 16, 2011

Комментировать:
пользователь: пароль:
регистрироваться  Залогинится под OpenID


Архив:

Jul2024   Jun2024   May2024   Apr2024   Mar2024   Feb2024   Jan2024   Dec2023   Nov2023   Oct2023   Sep2023   Aug2023   Jul2023   Jun2023   May2023   Apr2023   Mar2023   Feb2023   Jan2023   Dec2022   Nov2022   Oct2022   Sep2022   Aug2022   Jul2022   Jun2022   May2022   Apr2022   Mar2022   Feb2022   Jan2022   Dec2021   Nov2021   Oct2021   Sep2021   Aug2021   Jul2021   Jun2021   May2021   Apr2021   Mar2021   Feb2021   Jan2021   Dec2020   Nov2020   Oct2020   Sep2020   Aug2020   Jul2020   Jun2020   May2020   Apr2020   Mar2020   Feb2020   Jan2020   Dec2019   Nov2019   Oct2019   Sep2019   Aug2019   Jul2019   Jun2019   May2019   Apr2019   Mar2019   Feb2019   Jan2019   Dec2018   Nov2018   Oct2018   Sep2018   Aug2018   Jul2018   Jun2018   May2018   Apr2018   Mar2018   Feb2018   Jan2018   Dec2017   Nov2017   Oct2017   Sep2017   Aug2017   Jul2017   Jun2017   May2017   Apr2017   Mar2017   Feb2017   Jan2017   Dec2016   Nov2016   Oct2016   Sep2016   Aug2016   Jul2016   Jun2016   May2016   Apr2016   Mar2016   Feb2016   Jan2016   Dec2015   Nov2015   Oct2015   Sep2015   Aug2015   Jul2015   Jun2015   May2015   Apr2015   Mar2015   Feb2015   Jan2015   Dec2014   Nov2014   Oct2014   Sep2014   Aug2014   Jul2014   Jun2014   May2014   Apr2014   Mar2014   Feb2014   Jan2014   Dec2013   Nov2013   Oct2013   Sep2013   Aug2013   Jul2013   Jun2013   May2013   Apr2013   Mar2013   Feb2013   Jan2013   Dec2012   Nov2012   Oct2012   Sep2012   Aug2012   Jul2012   Jun2012   May2012   Apr2012   Mar2012   Feb2012   Jan2012   Dec2011   Nov2011   Oct2011   Sep2011   Aug2011   Jul2011   Jun2011   May2011   Apr2011   Mar2011   Feb2011   Jan2011   Dec2010   Nov2010   Oct2010   Sep2010   Aug2010   Jul2010   Jun2010   May2010   Apr2010   Mar2010   Feb2010   Jan2010   Dec2009   Nov2009   Oct2009   Sep2009   Aug2009   Jul2009   Jun2009   May2009   Apr2009   Mar2009   Feb2009   Jan2009   Dec2008   Nov2008   Oct2008   Sep2008   Aug2008   Jul2008   Jun2008   May2008   Apr2008   Mar2008   Feb2008   Jan2008   Dec2007   Nov2007   Oct2007   Sep2007   Aug2007   Jul2007   Jun2007   May2007   Apr2007   Mar2007   Feb2007   Jan2007   Dec2006   Nov2006   Oct2006   Sep2006   Aug2006   Jul2006   Jun2006   May2006